3.151 \(\int \frac{x^2}{\sqrt{a+b \cosh ^{-1}(c x)}} \, dx\)

Optimal. Leaf size=194 \[ -\frac{\sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}-\frac{\sqrt{\frac{\pi }{3}} e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}+\frac{\sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}+\frac{\sqrt{\frac{\pi }{3}} e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3} \]

[Out]

-(E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]])/(8*Sqrt[b]*c^3) - (E^((3*a)/b)*Sqrt[Pi/3]*Erf[(Sqrt[
3]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(8*Sqrt[b]*c^3) + (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]])/(8*
Sqrt[b]*c^3*E^(a/b)) + (Sqrt[Pi/3]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(8*Sqrt[b]*c^3*E^((3*a)/b
))

________________________________________________________________________________________

Rubi [A]  time = 0.360347, antiderivative size = 194, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 6, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.375, Rules used = {5670, 5448, 3308, 2180, 2204, 2205} \[ -\frac{\sqrt{\pi } e^{a/b} \text{Erf}\left (\frac{\sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}-\frac{\sqrt{\frac{\pi }{3}} e^{\frac{3 a}{b}} \text{Erf}\left (\frac{\sqrt{3} \sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}+\frac{\sqrt{\pi } e^{-\frac{a}{b}} \text{Erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}+\frac{\sqrt{\frac{\pi }{3}} e^{-\frac{3 a}{b}} \text{Erfi}\left (\frac{\sqrt{3} \sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3} \]

Antiderivative was successfully verified.

[In]

Int[x^2/Sqrt[a + b*ArcCosh[c*x]],x]

[Out]

-(E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]])/(8*Sqrt[b]*c^3) - (E^((3*a)/b)*Sqrt[Pi/3]*Erf[(Sqrt[
3]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(8*Sqrt[b]*c^3) + (Sqrt[Pi]*Erfi[Sqrt[a + b*ArcCosh[c*x]]/Sqrt[b]])/(8*
Sqrt[b]*c^3*E^(a/b)) + (Sqrt[Pi/3]*Erfi[(Sqrt[3]*Sqrt[a + b*ArcCosh[c*x]])/Sqrt[b]])/(8*Sqrt[b]*c^3*E^((3*a)/b
))

Rule 5670

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[(a + b*x)^n*
Cosh[x]^m*Sinh[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 5448

Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
 0] && IGtQ[p, 0]

Rule 3308

Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[I/2, Int[(c + d*x)^m/E^(I*(e + f*x))
, x], x] - Dist[I/2, Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]

Rule 2180

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[F^(g*(e - (c*
f)/d) + (f*g*x^2)/d), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2204

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erfi[(c + d*x)*Rt[b*Log[F], 2
]])/(2*d*Rt[b*Log[F], 2]), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]

Rule 2205

Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[(F^a*Sqrt[Pi]*Erf[(c + d*x)*Rt[-(b*Log[F]),
 2]])/(2*d*Rt[-(b*Log[F]), 2]), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{a+b \cosh ^{-1}(c x)}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\cosh ^2(x) \sinh (x)}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{c^3}\\ &=\frac{\operatorname{Subst}\left (\int \left (\frac{\sinh (x)}{4 \sqrt{a+b x}}+\frac{\sinh (3 x)}{4 \sqrt{a+b x}}\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{c^3}\\ &=\frac{\operatorname{Subst}\left (\int \frac{\sinh (x)}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{4 c^3}+\frac{\operatorname{Subst}\left (\int \frac{\sinh (3 x)}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{4 c^3}\\ &=-\frac{\operatorname{Subst}\left (\int \frac{e^{-3 x}}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3}-\frac{\operatorname{Subst}\left (\int \frac{e^{-x}}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3}+\frac{\operatorname{Subst}\left (\int \frac{e^x}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3}+\frac{\operatorname{Subst}\left (\int \frac{e^{3 x}}{\sqrt{a+b x}} \, dx,x,\cosh ^{-1}(c x)\right )}{8 c^3}\\ &=-\frac{\operatorname{Subst}\left (\int e^{\frac{3 a}{b}-\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \cosh ^{-1}(c x)}\right )}{4 b c^3}-\frac{\operatorname{Subst}\left (\int e^{\frac{a}{b}-\frac{x^2}{b}} \, dx,x,\sqrt{a+b \cosh ^{-1}(c x)}\right )}{4 b c^3}+\frac{\operatorname{Subst}\left (\int e^{-\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{a+b \cosh ^{-1}(c x)}\right )}{4 b c^3}+\frac{\operatorname{Subst}\left (\int e^{-\frac{3 a}{b}+\frac{3 x^2}{b}} \, dx,x,\sqrt{a+b \cosh ^{-1}(c x)}\right )}{4 b c^3}\\ &=-\frac{e^{a/b} \sqrt{\pi } \text{erf}\left (\frac{\sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}-\frac{e^{\frac{3 a}{b}} \sqrt{\frac{\pi }{3}} \text{erf}\left (\frac{\sqrt{3} \sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}+\frac{e^{-\frac{a}{b}} \sqrt{\pi } \text{erfi}\left (\frac{\sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}+\frac{e^{-\frac{3 a}{b}} \sqrt{\frac{\pi }{3}} \text{erfi}\left (\frac{\sqrt{3} \sqrt{a+b \cosh ^{-1}(c x)}}{\sqrt{b}}\right )}{8 \sqrt{b} c^3}\\ \end{align*}

Mathematica [A]  time = 0.346328, size = 195, normalized size = 1.01 \[ \frac{e^{-\frac{3 a}{b}} \left (3 e^{\frac{4 a}{b}} \sqrt{\frac{a}{b}+\cosh ^{-1}(c x)} \text{Gamma}\left (\frac{1}{2},\frac{a}{b}+\cosh ^{-1}(c x)\right )+\sqrt{3} \sqrt{-\frac{a+b \cosh ^{-1}(c x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )+3 e^{\frac{2 a}{b}} \sqrt{-\frac{a+b \cosh ^{-1}(c x)}{b}} \text{Gamma}\left (\frac{1}{2},-\frac{a+b \cosh ^{-1}(c x)}{b}\right )+\sqrt{3} e^{\frac{6 a}{b}} \sqrt{\frac{a}{b}+\cosh ^{-1}(c x)} \text{Gamma}\left (\frac{1}{2},\frac{3 \left (a+b \cosh ^{-1}(c x)\right )}{b}\right )\right )}{24 c^3 \sqrt{a+b \cosh ^{-1}(c x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^2/Sqrt[a + b*ArcCosh[c*x]],x]

[Out]

(3*E^((4*a)/b)*Sqrt[a/b + ArcCosh[c*x]]*Gamma[1/2, a/b + ArcCosh[c*x]] + Sqrt[3]*Sqrt[-((a + b*ArcCosh[c*x])/b
)]*Gamma[1/2, (-3*(a + b*ArcCosh[c*x]))/b] + 3*E^((2*a)/b)*Sqrt[-((a + b*ArcCosh[c*x])/b)]*Gamma[1/2, -((a + b
*ArcCosh[c*x])/b)] + Sqrt[3]*E^((6*a)/b)*Sqrt[a/b + ArcCosh[c*x]]*Gamma[1/2, (3*(a + b*ArcCosh[c*x]))/b])/(24*
c^3*E^((3*a)/b)*Sqrt[a + b*ArcCosh[c*x]])

________________________________________________________________________________________

Maple [F]  time = 0.108, size = 0, normalized size = 0. \begin{align*} \int{{x}^{2}{\frac{1}{\sqrt{a+b{\rm arccosh} \left (cx\right )}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(a+b*arccosh(c*x))^(1/2),x)

[Out]

int(x^2/(a+b*arccosh(c*x))^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{b \operatorname{arcosh}\left (c x\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccosh(c*x))^(1/2),x, algorithm="maxima")

[Out]

integrate(x^2/sqrt(b*arccosh(c*x) + a), x)

________________________________________________________________________________________

Fricas [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: UnboundLocalError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccosh(c*x))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: UnboundLocalError

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{a + b \operatorname{acosh}{\left (c x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(a+b*acosh(c*x))**(1/2),x)

[Out]

Integral(x**2/sqrt(a + b*acosh(c*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(a+b*arccosh(c*x))^(1/2),x, algorithm="giac")

[Out]

sage0*x